Глава 8

СТРУКТУРА ФОТОНА

§ 50. Фотон как структура из нейтрино и антинейтрино

Представление о фотонах, составляющих электромагнитное поле излучения, ставит вопрос о природе этих частиц — их свойствах, структуре, движении в пространстве, механизме взаимопрервращения и др.

Первое представление о фотоне как сложной частице было высказано Луи де Броильем *, который сделал предположение, что фотон с энергией \(hv \) есть некоторое образование из двух нейтрино с энергией \(hv/2 \). Затем Иордан ** в 1935 г. развил теорию фотона как сложной частицы из двух нейтрино. В отличие от гипотезы Луи де Броиля Иордан предположил, что излучение фотона с частотой \(\nu \) можно рассматривать как испускание в направлении движения фотона двух когерентных (т. е. движущихся параллельно) частиц — нейтрино и антинейтрино с энергиями \(hv' \) и \(h(\nu-\nu') \) или как поглощение частицы с энергией \(hv' \) и вылетом в том же направлении такой же частицы с энергией \(h(\nu+\nu') \). Тогда квантовые амплитуды поля двух нейтрино, подчиняющихся статистике Ферми, можно сопоставить с квантовыми амплитудами поля фотонов, подчиняющихся статистике Бозе.

Несколько работ по нейтринной теории света было сделано А. А. Соколовым *. В первой из указанных работ была развита одномерная теория, которая в дальнейшем была распространена и на трехмерный случай. Для нейтринного поля в одномерном случае решается уравнение Дирака:

\[(\hat{W} + c\alpha \hat{p}) \psi = 0, \]

где

\[\hat{W} = -\frac{\hbar}{i} \frac{\partial}{\partial t}, \quad \hat{p} = \frac{\hbar}{i} \frac{\partial}{\partial x}, \]

\[\alpha = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \psi = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}, \quad \psi^\ast = \begin{pmatrix} \psi_1^\ast \\ \psi_2^\ast \end{pmatrix}. \]

Полная энергия \(\hat{W} \) определяется как

\[\hat{W} = \int_{-\infty}^{\infty} \psi^\ast \hat{W} \psi \, dx = -\frac{\hbar}{i} \int_{-\infty}^{\infty} \psi^\ast \frac{\partial \psi}{\partial t} \, dx. \]

Уравнение (50.1) может быть записано в виде:

\[\frac{1}{c} \frac{\partial \psi_1}{\partial t} = \frac{\partial \psi_2}{\partial x}; \quad \frac{1}{c} \frac{\partial \psi_2}{\partial t} = \frac{\partial \psi_1}{\partial x}. \]

Решения этих и аналогичных уравнений получаются в виде разложения Фурье:

\[\psi_i(x, t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \{ a_i(k) e^{-i\omega k t - ikx} + c_i^\ast (-k) e^{i\omega k t + ikx} \} \, dk, \]

где \(i = 1, 2; \)

\[\psi_i^*(x, t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \{ a_i^*(k) e^{i\omega k t - ikx} + c_i (-k) e^{-i\omega k t - ikx} \} \, dk. \]

* А. А. Соколов. О возможности нейтринной теории света. ЖЭТФ. т. 7, 1937. стр. 1055; А. А. Соколов. К возможности построения нейтринной теории света. ЖЭТФ. т. 8, 1938, стр. 114; 644.
Причем \(a_t \) относится к полю нейтрино, а \(c_t \) — к полю антинейтрино. Переходя к квантовым амплитудам с помощью квантового уравнения движения

\[
F = \frac{i}{\hbar} (\overline{W} F - F \overline{W}) \tag{50.8}
\]

и рассматривая квантовые амплитуды \(a(k) \) и \(a^* (k) \) как операторы, действующие по определенным правилам, приводящим к порождению и поглощению частиц, находим полную энергию как сумму положительных энергий нейтрино и антинейтрино:

\[
\overline{W} = \int_{-\infty}^{\infty} c \hbar |k| \left\{ N_a (k) + N_c (k) - N_0 \right\} dk, \tag{50.9}
\]

где \(N_a (k) \) и \(N_c (k) \) — числа нейтрино и антинейтрино; \(N_0 \) — число частиц, соответствующее нулевой энергии.

Для квантованных амплитуд нейтринного поля получаются выражения:

\[
a(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{\{\Psi_2 (x, t) - k_1 \Psi_1 (x, t)\}}{\sqrt{2}} dx e^{i e |k| t - ikx},
\]

\[
a^*(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{\{\Psi_2^* (x, t) - k_1 \Psi_1^* (x, t)\}}{\sqrt{2}} dx e^{-i e |k| t + ikx},
\]

\[
c(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{\{\Psi_2^* (x, t) - k_1 \Psi_1^* (x, t)\}}{\sqrt{2}} dx e^{i e |k| t - ikx},
\]

\[
c^*(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{\{\Psi_2 (x, t) - k_1 \Psi_1 (x, t)\}}{\sqrt{2}} dx e^{-i e |k| t + ikx}.
\]

(50.10)

Используя эти амплитуды для построения фотонного поля, можно найти амплитуды этого поля из уравнения для потенциала \(\Phi (x, t) \):

\[
\frac{\partial^2 \Phi}{\partial t^2} - c^2 \frac{\partial^2 \Phi}{\partial x^2} = 0, \tag{50.11}
\]
решение которого было записано в виде интеграла Фурье:

$$
\varphi (x, t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \{ b (k) e^{-i c |k| t - i k x} + b^* (k) e^{i c |k| t - i k x} \} dk,
$$

(50.12)

а после вторичного квантования, в случае представления квантованных амплитуд как операторов излучения и поглощения частиц, для полной энергии и квантованных амплитуд фотонного поля были найдены выражения:

$$
\bar{W} = \int_{-\infty}^{\infty} c \hbar |k| \left(N_k + \frac{1}{2} \right) dk;
$$

(50.13)

$$
b (k) = \frac{1}{2 \sqrt{2\pi}} \int_{-\infty}^{\infty} dx \left\{ \varphi (x, t) + \frac{i}{c |k|} \frac{\partial \varphi (x, t)}{\partial t} \right\} e^{-i c |k| t - i k x};
$$

(50.14)

$$
b^* (k) = \frac{1}{2 \sqrt{2\pi}} \int_{-\infty}^{\infty} dx \left\{ \varphi (x, t) - \frac{i}{c |k|} \frac{\partial \varphi (x, t)}{\partial t} \right\} e^{-i c |k| t + i k x},
$$

(50.14')

где $N_k = N(k)$ — число фотонов с волновым вектором \vec{k}. Затем были получены выражения для амплитуд фотонного поля через амплитуды нейтринного поля. При этом потенциал $\varphi (x, t)$ был представлен в виде:

$$
\varphi (x, t) = i \sqrt{\frac{\epsilon \hbar}{4\pi}} \int_{-\infty}^{\infty} dk dl \frac{e^{-i |k| - |l| x}}{k - l} \times
$$

$$
\times \left\{ \frac{k_1 + l}{2} \left[- a^* (k) a (l) e^{i c (|k| - |l|) t} + c (-k) c^* (-l) e^{-i c (|k| - |l|) t} \right] +
$$

$$
+ \frac{k_1 - l}{2} [c (-k) a (l) e^{-i c (|k| + |l|) t} - a^* (k) c^* (-l) e^{i c (|k| + |l|) t}] \right\},
$$

(50.15)
где \(b(k) \), \(b(-k) \) и \(b^*(k) \), \(b^*(-k) \) для \(k \geq 0 \) имеют вид:

\[
b(k) = i \sqrt{\frac{\text{ch}}{2|k|}} \left\{ \int_0^\infty dl \left[a^*(l) a(l + k) + c(l + k) c^*(l) \right] + \right.
\]
\[
+ \int_0^k dl c(l) a(k - l) \right\}, \quad (50.16)
\]

\[
b(-k) = i \sqrt{\frac{\text{ch}}{2|k|}} \left\{ \int_0^\infty dl \left[a^*(-l) a(-l - k) + \right.
ight.
\]
\[
+ c(-l - k) c^*(-l) \right\} + \int_0^k dl c(-l) a(-k - l) \right\}, \quad (50.16')
\]

\[
b^*(k) = i \sqrt{\frac{\text{ch}}{2|k|}} \left\{ \int_0^\infty dl \left[a^*(l + k) a(l) + c(l) c^*(l + k) \right] + \right.
\]
\[
+ \int_0^k dl a^*(l) c^*(k - l) \right\}, \quad (50.16'')
\]

\[
b^*(-k) = i \sqrt{\frac{\text{ch}}{2|k|}} \left\{ \int_0^\infty dl \left[a^*(-l - k) a(-l) + \right.
ight.
\]
\[
+ c(-l) c^*(-l - k) \right\} + \int_0^k dl a^*(-l) c^*(-k + l) \right\}. \quad (50.16''')
\]

Эти соотношения можно интерпретировать следующим образом: поглощение (испускание) фотона с волновым числом \(k \) есть поглощение (испускание) нейтрино и антинейтрино с волновыми числами \(l \) и \(l - k \), или же поглощение (испускание) одной из частиц (нейтрино, антинейтрино) с волновым числом \(l + k \) при одновременном испускании (поглощении) аналогичной частицы с волновым числом \(l \). Вторая возможность представляет...
сой Раман-эффект без изменения направления движения фотона, что было предсказано Йорданом в работе по нейтринной теории света, и дает хорошее объяснение красному смещению в атмосферах звезд.

§ 51. Фотон как возбужденная электронно-позитронная пара в дираковском вакууме

Эта модель фотона была предложена в дипломной работе Л. И. Сла́бкого *, выполненной под руководством автора. Здесь фотон рассматривается как сложная частица, состоящая из аннигилировавших электрона и позитрона, т. е. как возбужденная виртуальная пара в дираковском электронно-позитронном вакууме. Такая пара при поглощении большой энергии может распасться на e^+ и e^-, или, наоборот, при аннигиляции испустить фотоны большой энергии. Этот факт служит первым подтверждением данной модели фотона.

Полная энергия фотона может состоять из двух компонент — энергии колебаний W_v, которая аналогична энергии осциллятора и равна

$$W_v = \hbar \omega \left(v + \frac{1}{2} \right), \quad (51.1)$$

где v — квантовое число; ω — частота световых колебаний, и энергии поступательного движения W_τ, равной

$$W_\tau = p_\tau c, \quad (51.2)$$

где p_τ — продольный импульс фотона. Полный импульс фотона будет:

$$p = \frac{\hbar \omega}{c} \left(v + \frac{1}{2} \right) + p_\tau. \quad (51.3)$$

Масса фотона m_φ также состоит из двух частей — поперечной m_v и продольной m_τ.

* Л. И. Сла́бкый. Структура фотона. Дипломная работа. МГУ. Физический факультет, 1959; Научно-методический сборник № 26, 1961, ВВИА им. Жуковского, стр. 42.
Для продольной массы m_τ справедливо соотношение:

$$m_\tau c^2 = W_\tau = pc,$$

(51.4)

а полная энергия фотона может быть записана в виде:

$$\hbar\omega = \hbar\omega (v + \frac{1}{2}) + m_\tau c^2.$$

(51.5)

Отсюда находим

для $v = 0$

$$m_\tau = \frac{\hbar\omega}{2c^2},$$

(51.6)

dля $v = 1$

$$m_\tau = -\frac{\hbar\omega}{2c^2}.$$

(51.7)

Среднее значение продольной массы фотона за период колебаний равно нулю, если только $\omega_{01} = \omega_{10}$, где ω_{01} и ω_{10} — вероятности перехода фотона из состояния $v = 0$ в состояние $v = 1$ и обратно. Продольная энергия изменяется между значениями:

$$\frac{\hbar\omega}{2} \text{ для } v = 0,$$

(51.8)

$$-\frac{\hbar\omega}{2} \text{ для } v = 1,$$

и поэтому в среднем она равна нулю: значит, продольная масса и энергия не переносятся в пространстве.

Поперечная часть энергии принимает значения:

$$W_\nu = \frac{\hbar\omega}{2} \text{ для } v = 0,$$

(51.9)

$$W_\nu = \frac{3}{2} \hbar\omega \text{ для } v = 1,$$

и соответственно масса изменяется в пределах:

$$m_\nu = \frac{\hbar\omega}{2c^2} \text{ для } v = 0,$$

$$m_\nu = \frac{3}{2} \frac{\hbar\omega}{c^2} \text{ для } v = 1.$$
Средние значения поперечной энергии и массы соответственно равны:

$$\overline{W}_v = \hbar \omega, \quad (51.10)$$
$$\overline{m}_v = \frac{\hbar \omega}{c^2}, \quad (51.11)$$

т. е. поперечная часть массы и энергии переносятся в пространстве со скоростью с. Но этот перенос следует рассматривать не как трансляцию массы и энергии, а как волновой процесс — передачу массы и энергии (а также импульса и момента импульса) от одной виртуальной пары другой виртуальной паре, приходящей в колебательное состояние после перехода к ней энергии возбуждения.

В этой модели процесс распространения электромагнитных волн мыслится как распространение волн поляризации в дипольной среде, какой является дираховский электронно-позитронный вакуум.

§ 52. Фотон как осциллирующее электронно-позитронное поле дираховского вакуума

В более общем виде реальные и виртуальные фононы можно понимать как осцилляторы в дираховском вакууме, в качестве которых могут быть приняты волны поляризации дираховского вакуума, скорость распространения которых равна скорости света. Так как энергия осциллятора равна

$$W = \hbar \omega \left(v + \frac{1}{2} \right), \quad (52.1)$$

то в случае \(v = 0 \) есть лишь нулевые колебания с энергией

$$W_0 = \frac{\hbar \omega}{2}, \quad (52.2)$$

соответствующей виртуальным фононам. Это волновое поле вызывает спонтанные переходы атомов, являющиеся индуцированными переходами под влиянием виртуальных фононов. Тогда фотон представляет собой волновое возбуждение электронно-позитронного вакуума. В таком случае фононы как частицы являются
возбужденной электронно-позитронной парой, на которую статистическим образом в результате флуктуаций в поле излучения может сосредоточиться энергия $W_f = h\omega$. Механизм такого внезапного флуктуационного перераспределения энергии волн поляризации дикаковского вакуума не вполне ясен. Но если это происходит, то в данной точке пространства возникает фотон как частица с массой $m = h\omega/c^2$, импульсом $p = h\omega/c$, энергией $h\omega$ и моментом количества движения \hbar. Вероятнее всего флуктуационное рождение фотонов как частиц может происходить лишь благодаря наличию частиц вещества, в результате взаимодействия с которыми и происходит квантовый обмен энергией между полем и частицами вещества.

§ 53. Модели фотона и внегалактическое красное смещение

Одно из наиболее загадочных оптических явлений нашего времени заключается в красном смещении спектральных линий излучений, идущих от внегалактических туманностей. Это смещение подчиняется эмпирической формуле

$$\Delta \lambda = \lambda kR,$$ \hspace{1cm} (53.1)

где $\Delta \lambda$ — смещение спектральной линии в красную часть спектра; λ — наблюдаемая длина волны; R — расстояние от Земли до внегалактической туманности (в мегапарсеках); $k = 1,82 \times 10^{-3}$ Мпакрекс$^{-1}$. Если длина наблюдаемой световой волны равна $\lambda = 5500$ Å, то для расстояния от внегалактической туманности в 1 Мпакрекс

$$\Delta \lambda = 10 \text{ Å}.$$

Такие смещения спектральных линий соответствуют потере энергии фотоном, равной $\Delta W = 6,6 \times 10^{-15}$ эрг при энергии фотона $W = 3,6 \times 10^{-12}$ эрг.

Гипотеза разбегающихся туманностей (расширяющейся Вселенной), скоростью которых возрастает с радиусом R по формуле (53.1), позволяет объяснить красное смещение как Допплер-эффект.
Возможна также гипотеза «старения» фотонов, когда фотон теряет свою энергию на всем пути движения от туманности до наблюдателя. Такая потеря может происходить по крайней мере по двум причинам: или благодаря специфическому взаимодействию с веществом, при котором происходит частичная потеря энергии фотоном без изменения направления импульса, или вследствие рассеяния энергии фотона в дикровском вакууме. По- степенно теряя энергию, фотон испытывает, таким образом, красное смещение.