SULLA TEORIA DELLE VARIABILI
FONDATA SUI POSTULATI DI RITZ - LA ROSA

Nota di GINO CECCHINI

RIASSUNTO. — Sulla base delle attuali conoscenze parallattiche, sono mosse obbiezioni di carattere spettroscopico e statistiche alle conseguenze più immediate e fondamentali della teoria balistica delle stelle variabili, emessa e sostenuta dal prof. LA ROSA. Fra l’altro, la legge quasi-sinusoidale della variazione delle velocità radiali osservate per le Cefeidi, appare inconciliabile colle premesse della teoria balistica; e quindi, per queste stelle, non è giustificabile la variabilità: non avrebbe perciò significato la dimostrazione qualitativa della legge di Miss LEAVITT, data recentemente sulle basi della teoria stessa.
Le obbiezioni si conservano anche alterando i dati parallattici, su cui sono fondate, al di là di ogni ragionevole limite.

1. — Il nuovo contributo che il prof. LA ROSA (1)(*) ha recentemente apportato alla suggestiva e geniale teoria delle variabili, da lui esposta parecchi anni fa (2), mi offre l’occasione di alcune considerazioni di carattere generale sulla base delle determinazioni parallattiche — che non mi constano state segnalate —, le quali sembrano opporsi alla validità della teoria in una moltitudine di casi.
È chiaro che il sorgere di dubbi, nelle conseguenze più immediate dello schema teorico proposto, non può che incitare a vincerci e, eventualmente, a costituirne altrettante prove favorevoli, atte ad incoraggiare più ampi sviluppi per l’avvenire. È in questo senso, e all’infuori di qualunque preconcetto, che sottometto all’esame dell’autore le considerazioni che fanno seguito ad un cenno sommario della teoria.

2. — La teoria delle stelle variabili, sviluppata da LA ROSA, presuppone due ipotesi:
1) che la velocità della luce si sommi vettorialmente con quella della sorgente (postulato balistico, o di Ritz);
2) che tutte le stelle variabili, senza eccezioni, siano stelle doppie o multiple, il cui moto è regolato dalle leggi della meccanica classica.

(*) Vedi la Bibliografia in fine della presente nota.
Come è ben noto, nè l'una, nè l'altra ipotesi, possono essere contestate a priori.

Il postulato di RITZ (*), che pure ha dato luogo a molte discussioni, allo stato attuale delle nostre conoscenze e nei limiti della realtà osservata, ha sostanzialmente lo stesso diritto di esistenza del 2° postulato della teoria della Relatività di EINSTEIN, che afferma il contrario. L'esperienza, sia attraverso l'osservazione di stelle in moto orbitale, secondo la prova invocata separatamente da COMSTOCK (*) e da CASTELNUOVO (*), sia nella ricerca di un effetto DOPPLER di accelerazione, in aggiunta al noto effetto DOPPLER di velocità, nulla di decisivo, per ora almeno, ha detto in proposito.

Infatti, pur potendo essere notevole, nelle osservazioni di stelle doppie, la differenza degli intervalli di tempo fra i passaggi ai punti di quarratura, la valutazione è complicata dalle caratteristiche orbitali; nè, come ha dimostrato LA ROSA (*), è da temere che, secondo l'opinione di DE SITTER (*), il postulato balistico conduce, in opposizione coi fatti, all'insondabilità della legge di movimento, per i conseguenti accavallamenti dei raggi partiti dalla stella in moto, in tempi e in posizioni differenti della orbita (*). E' il secondo sistema di prova, che, in accordo a DE SITTER, THIERRING e BERNHEIMER, hanno invocato CORNINO e LEVI-CIVITA (*), rilevando, sia pure con qualche riserva, l'imponenza che, nell'ipotesi balistica, avrebbe avuto l'effetto DOPPLER di accelerazione, è dichiarato da GIORGI(*) inadatto per una conclusione; per cui, la mancata rivelazione del fenomeno da parte dell'osservazione, non può considerarsi contraria al postulato di RITZ.

D'altro lato, il fondamento della teoria di LA ROSA (*), che interpreta e può giustificare qualitativamente le più svariate forme di variabilità luminosa e, quantitativalemente, anche importi ragguardevoli di variazione, in accordo coll'esperienza, non ha nulla che urti concettualmente contro le attuali vedute sulla costituzione delle stelle, specialmente dopo la scoperta di un gran numero di sistemi multipli, visuali o spettrascopici. Il suo valore consisterebbe principalmente nell'unicità di interpretazione di tante particolarità presentate dalle stelle variabili, attraverso uno schema semplice e avvincente; ma, mentre è chiaro che, se la teoria è stata emessa, deve di necessità essere in grado di spiegare molte cose, è altrettanto evidente che le sue conseguenze non debbono essere in conflitto con dati certi di osservazione.

3. — Una stella rotante attorno ad un centro — centro di massa di un sistema generalmente multiplo — in un'orbita (circolare) che con-

(*) Ciò è valido per le doppie visuali; ma vedremo più avanti che sembrano esistere doppie spettrascopiche per le quali la legge di movimento, secondo il postulato balistico, dovrebbe essere inosservabile.
senta l’applicazione del postulato balistico (e quindi posta in un piano che, per semplificare, possiamo supporre contenga l’osservatore), appare, nella teoria di La Rosa, come una stella variabile, quando è soddisfatta la condizione

\[K \cdot b = a, \]

dove: \(K = a/\tau \), \(\tau \) essendo il periodo (in anni) ed \(a \) la distanza del centro dall’osservatore (in anni-luce); \(b \) la velocità orbitale della stella (in anni-luce), ed \(a \), infine, una quantità che si aggira attorno al valore \(1/2 \pi \).

La condizione [1] implica un intervallo ampio di variabilità del prodotto \(K \cdot b \), entro il quale la variazione periodica di luminosità della stella è accessibile all’osservazione, raggiungendo la massima ampiezza per \(a = 1/2 \pi \); la variazione è sostanzialmente dovuta, sia all’arrivo contemporaneo di raggi emessi da più posizioni (in numero variabile col tempo), sia in causa di una fluttuazione addittiva, ma notevole, che trarrebbe origine in un valore variabile, col tempo, del rapporto dei successivi intervalli di tempo di emissione e di ricevimento. E, dal valore di \(a \), da legittime ipotesi sull’eccentricità dell’orbita, dalla differente complessità del sistema stellare considerato (con conseguenti perturbazioni delle orbite), si prevedono o si giustificano curve di luce dalle più semplici alle più complesse, con periodi eventualmente variabili, e massimi e minimi pure variabili.

La teoria ha anche risposto (10) finora, alle critiche che le sono state mosse specialmente da De Sitter, Salet, Nordmann e Le Morvan: in sostanza, è stato richiesto principalmente l’accordo della teoria colle variazioni della velocità radiale ed anche la giustificazione della dipendenza della variazione dell’ampiezza dell’intensità luminosa dalla regione dello spettro, dipendenza che, per certe stelle, è assai sensibile.

4. — Ma se le argomentazioni appaiono plausibili, in linea di massima, non poche conseguenze e prove della teoria sembrano contestabili.

Dalle curve di La Rosa (2), che rappresentano, per vari valori di \(a \), la funzione \(T = f(t) \), — \(T \) e \(t \) essendo rispettivamente i tempi di arrivo e di partenza dei raggi luminosi — risulta che:

1) se \(a \) è piccolo (\(a < 1/2 \pi \)) non si avrà sovrapposizione di luce se non da punti dell’orbita poco distanti fra loro; e, quindi, dalla legge sinusoidale delle velocità radiali effettive

\[V = V_0 + v \sin 2\pi \frac{t - t_0}{\tau} \]

si potrà derivare, come La Rosa ha dimostrato (1), la legge delle velocità radiali osservate, senza grandi inconvenienti: questa legge dipenderà da \(a \) e per \(a < 0.03 \) sarà sinusoidale praticamente, entro cioè gli errori di osservazione;
2) per valori crescenti di α, fino a $1/2 \pi$ incluso, la legge conserverà ancora un carattere quasi-sinusoidale, ma con deviazioni sempre maggiori dalla sinusoide pura;

3) per $\alpha > 1/2 \pi$ «l’ipotesi della quasi-sinusoidalità delle velocità osservate diventa incompatibile con le premesse della teoria balistica» e potremo avere righe spettrali multiple, o semplicemente diffuse, con carattere periodico, il quale risulterà sempre meno sensibile al crescere di α, mentre l’espansione delle righe andrà sempre più accentuandosi;

4) infine, per $\alpha > 10$, «l’osservazione spettroscopica fondata sullo studio dei mutamenti periodici delle righe non ci permetterà più di constatare la natura di «doppie» delle stelle» (1).

Multiplicità e periodiche variazioni delle righe spettrali trovano quindi, nella teoria di La Rosa, un’interpretazione differente da quella che ha permesso la costatazione delle stelle doppie spettroscopiche: quando è infatti $\alpha > 1/2 \pi$ queste caratteristiche sono attribuite all’osservazione contemporanea di varie velocità della stessa stella e non già alle diverse velocità che, nello stesso tempo, hanno stelle diverse, in moto orbitale. Ora, a parte il fatto che la teoria non può certamente escludere questa causa, si può mostrare che, pure essendo assai ampio il margine stabilito da La Rosa per la previsione di uno «stato costante di espansione» delle righe spettrali, si hanno stelle per le quali è $\alpha > 10$ ed è tuttavia possibile di constatare accuratamente la natura di doppie.

5. — Cominciamo coll’osservare, infatti, che una delle caratteristiche delle doppie spettroscopiche è la correlazione statistica, abbastanza stretta, fra periodo e classe spettrale, in virtù della quale il maggior numero di doppie spettroscopiche a corto periodo (minore di 10 g.), appartiene ai primissimi tipi spettrali O e B; non appare quindi giusto il dire che «l’efficienza dei metodi spettroscopici per la scoperta di stelle complesse deve venire rapidamente meno a misura che la distanza delle stelle cresce» e neppure il dire che «l’ipotesi balistica ci dà un ottimo fondamento per spiegare il curioso addensamento delle doppie (spettroscopiche) conosciute attorno ai gradini 4° e 5° della scala delle grandezze apparenti» (1). E invero, a parte la statistica di sole 137 stelle, mentre già dal 1924 oltre 1000 doppie spettroscopiche sono state catalogate (2) fra le stelle più brillanti della grandezza 6.5, il motivo di un simile addensamento può essere trovato molto semplicemente nella grande limitazione che alle osservazioni spettrografiche — fatte specialmente allo scopo della determinazione delle velocità radiali — viene posta dalle deboili grandezze stellari: non giò da considerazioni di distanza (2°), ritenuta poi come una prova statistica della

(1) Third Catalogue of Spectroscopic Binaries, Lick Observatory, 1924.

(2°) Come si sa, la grandezza apparente di una stella è un'essenziale criterio di distanza, quando si abbiano in vista deduzioni che non includano e non confrontino tutte le stelle delle successive distanze.
teoria, quando proprio fra le stelle più lontane (tipi \(O \) e \(B \)) la frequenza delle doppie spettroscopiche è notevolissima e, anzi, massima.

La dimostrazione quantitativa, contraria alla deduzione ricordata al comma 4, richiede la considerazione delle parallassi e, evidentemente, sulla valutazione di esse, possono essere compiuti errori non indifferenti; ma nessuno, io credo, dubiterà che la parallasse media 0'' .0066 delle stelle del tipo \(B \), tratta dalla considerazione di ben 490 stelle e con identico risultato, sia dal moto parallattico, sia dai moti peculiari, sia molto lontana dal vero. Tanto le ricerche statistiche, quanto le determinazioni spettroscopiche, e le stesse parallassi trigonometriche, in gran parte negative, per le stelle del tipo \(B \), si accordano nel ritenere che le parallassi di queste stelle siano dell’ordine di pochi millesimi di secondo d’arco. Inoltre, per le doppie meglio studiate, le velocità orbitali appaiono assai alte, spesso superiori ai 100 km/sec.

Fissando le idee, per tutte le doppie spettroscopiche con parallassi di 0'' .007, velocità orbitale (dell’una o dell’altra componente) maggiore di 90 km/sec e periodo non superiore a 5 giorni, risulterà

\[
K > 0,34 \cdot 10^5 ; \quad \beta > 30 \cdot 10^{-5}
\]

e, conseguentemente,

\[
k \beta = \alpha > 10 ,
\]

cioè tutte queste doppie spettroscopiche osservate si opporranno ad una delle conseguenze più importanti della teoria (*).

Basterà l’esempio concreto di due doppie spettroscopiche ben conosciute:

<table>
<thead>
<tr>
<th></th>
<th>Classe</th>
<th>Periodo</th>
<th>Veloc. orbit.</th>
<th>Parallasse</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi) Ori</td>
<td>B 2</td>
<td>2.53 g.</td>
<td>(144 km/sec, 190)</td>
<td>0'' .0057</td>
<td>39.6</td>
</tr>
<tr>
<td>29 C Ma</td>
<td>O e</td>
<td>4.39</td>
<td>218</td>
<td>0'' .0071</td>
<td>27.6</td>
</tr>
</tbody>
</table>

Gli elementi indicati sono tratti da Russell, Dugan e Stewart (***) e dubbi possono ancora sussistere sui valori indicati per le parallassi, sebbene anche triplicando i valori riportati, e quindi riducendo ad 1/3 i

(*) È chiaro che le doppie che soddisfano alle condizioni indicate, o ad altre che ad esse equivalentano, si oppongono, in modo particolare, al postulato di Rrzz.
(**) Astronomy, a revision of John’s Manual of Astronomy, parte II, pag. 706.
valori di α, la dimostrazione non perda il suo significato. Ma, per maggiore esaetrazza, ricordiamo i valori delle parallassi ottenute per le due stelle, con metodi ben differenti.

Per ϕ Ori si hanno le determinazioni spettroscopiche: di Adams e Joy, $0''.008$; di Edwards, $0''.005$; di Rimmer, $0''.004$; la determinazione trigonometrica effettuata a Yorkes (ridotta ad un sistema uniforme) (1), $-0''.010 \pm 0''.009$ (e. p.); infine, le determinazioni di Kapteyn, $0''.006$; di Rasmussen, $0''.014$; di Plummer, $0''.011$; queste ultime fondate rispettivamente sul parallelismo ed eguaglianza di moto di gruppi stellari, su ricerche effettuate sul gruppo mobile di Orione e, infine, sull'ipotesi di un moto delle stelle B parallelo al piano galattico.

Per 29 C Ma, abbiamo inoltre la determinazione spettroscopica di Adams e Joy, $0''.003$.

Nessun dubbio, dunque, che i valori di α escano fuori dal limite richiesto dalla teoria di La Rosa, nei due casi considerati, e in quelli eventuali in cui le condizioni imposte — od altre equivalenti — siano soddisfatte.

E, per restare sull'argomento, in quanto allo « stato di espansione costante presentato dalle righe spetrali di molte stelle » (1), che in realtà si presenta in non pochi casi fra le stelle dei primi tipi spetrali, basterà osservare che il suo manifestarsi, come conseguenza della teoria balistica, impossibile per le stelle parallasi molto piccole, in media e a parità delle altre circostanze, mentre è ben risaputo, e statisticamente assodato, che fra le stelle della medesima classe spetrale quelle che presentano righe espanse — larghe e confuse — hanno, rispetto alle altre, più deboli grandezze assolute, e sono quindi fra le più vicine. Questo stato di espansione è ben noto, inoltre, che trova una soddisfacente interpretazione — al pari del caso estremo opposto, di righe strette e ben definite — nelle condizioni fisiche dell'atmosfera stellare.

Da quanto precede, si può intanto ritenere che, sia la statistica delle doppie spettroscopiche, sia la natura delle righe spetrali, quali sono interpretate dalla teoria di La Rosa, non sembrano in accordo con fatti osservati.

6. — Consideriamo adesso le doppie spettroscopiche variabili (variabili del tipo Algol) per le quali il fenomeno di variabilità è interpretato comunemente, e in tutti i particolari, delle diverse circostanze che possono determinare un'ecclisse fra le componenti. Nella prima Memoria di La Rosa (1), la possibilità dell'ecclisse non fu considerata, tanto è vero che furono addotti esempi numerici per dimostrare — sia pure attraverso le grandi incertezze delle parallassi adoperate — che la teoria rendeva ben conto anche dei fenomeni presentati da queste variabili; ma, ritornando sull'argomento, in seguito ad un'obiezione di Salee, La Rosa ha ammesso, com'è naturale, che la sua teoria non si oppone alla spiegazione dell'ecclisse: potremmo anzi aggiungere che le condizioni richieste dalla teoria dovrebbero portare con sè la circostanza dell'ecclisse con una certa frequenza.
In tal caso, la variabilità della stella può essere indipendente dall'effetto balistico, il quale interverrebbe o no a seconda del valore di α. Non è difficile notare che, in queste condizioni, la teoria di La Rosa perde, per questa classe di variabili, abbastanza numerosa (*), tutto il suo significato; perchè se anche fosse possibile di dimostrare rigorosamente che le condizioni di variabilità balistica sono verificate, l'aggiunta di una spiegazione problematica a quella nota, che spiega già da sola tutto il fenomeno, riconducendolo a cause semplicissime, appare evidentemente artificiosa.

Il La Rosa è indotto, peraltro, a ritenere che la teoria dell'eclisse non sia sufficiente, in certi casi, a spiegare tutte le particolarità della variazione di luce; ma è qui necessario avvertire che i casi da lui considerati riguardano certe stelle (η Aquilae, δ Cephei), che, come è notissimo, sono Cefeidi e per le quali ormai la teoria dell'eclisse è completamente abbandonata: non sembra giusto, quindi, l'attribuire a difetto di interpretazione di una teoria la circostanza che essa non soddisfa in casi in cui, oggi, nessuno pensa di applicarla.

Vediamo, dal punto di vista numerico, quali conseguenze possono essere tratte da alcune binarie ad eclisse.

<table>
<thead>
<tr>
<th></th>
<th>Classe</th>
<th>Periodo</th>
<th>Veloc. orbit.</th>
<th>Parallasse</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>η Ori</td>
<td>B 1</td>
<td>7.99 g</td>
<td>${145$ Km/sec</td>
<td>$0''0057$</td>
<td>12.6</td>
</tr>
<tr>
<td>β Sco</td>
<td>B 1</td>
<td>6.83</td>
<td>${126$</td>
<td>0.085</td>
<td>8.6</td>
</tr>
<tr>
<td>α Vir</td>
<td>B 2</td>
<td>4.01</td>
<td>${126$</td>
<td>0.014</td>
<td>8.8</td>
</tr>
<tr>
<td>μ, Sco</td>
<td>B 3 p</td>
<td>1.45</td>
<td>${480$</td>
<td>0.074</td>
<td>14.6</td>
</tr>
</tbody>
</table>

Nei casi considerati, o almeno in alcuni di essi, siamo certamente fuori dal limite di variabilità ($0.02 < \alpha < 5$) che era stato stabilito inizialmente in base a considerazioni intuitive.

Più tardi La Rosa ha mostrato (14), invece, che non esisterebbe un limite superiore di α, oltre il quale il fenomeno di variabilità non si presenta; ma, per $\alpha > 5$ egli ottiene curve di luce con massimi brevi e notevolmente bruschi e con minimi di lunga durata: caratteri questi che evidentemente non si addicono alle variabili Algol, come egli stesso riconosce, ma che, dal lato formale, sono analoghi a quelli presentati dalle variabili di ammasso. L'eliminazione del limite superiore sembra quindi, per le stelle Algol, ancor meno favorevole alla teoria balistica, perchè solo nel

(*) Fra le stelle più brillanti della grandezza 8.75 si conoscono 132 binarie ad eclisse.
caso dell’esistenza di un tale limite (straendo da valori picolissimi di \(\alpha\) che qui non entrano in considerazione) l’eclisse poteva essere considerata in certi casi come l’unica causa determinante la variabilità e, fra l’altro, la teoria non sarebbe stata contraddetta, secondo l’obiezione di SALET, dal comportamento della velocità radiale (\(16\)).

E’ tuttavia interessante di constatare, per le stelle considerate, la bontà delle parallasse, le quali, come gli altri elementi, sono tratti dalla stessa fonte precedentemente indicata.

Per \(\eta\) Ori abbiamo le determinazioni spettroscopiche: di ADAMS e JOY, 0''0.007; di EDWARDS, 0''0.010; di RIMMER, 0''0.009; le determinazioni indipendenti di KAPTEYN, 0''0.006; di RASMUSON, 0''0.002; di PLUMMER, 0''0.006; infine la determinazione trigonometrica (\(19\)) (McCormick), 0''0.025 ± 0''0.008 (e. p.) e la parallasse ipotetica (ridotta allo stesso sistema), 0''0.010. Siamo certamente fuori dal limite \(\alpha < 5\) per ambedue le componenti.

Per \(\beta\) Sco abbiamo le determinazioni spettroscopiche: di ADAMS e JOY, 0''0.007; di EDWARDS, 0''0.008; di RIMMER, 0''0.007; le determinazioni di KAPTEYN, 0''0.009; di RASMUSON, 0''0.008; infine la parallasse ipotetica, 0''0.007. In questo caso non solo siamo fuori dal limite \(\alpha < 5\) ma, probabilmente, entro quello (\(\alpha > 10\)) che stabilirebbe l’impossibilità di riconoscimento della natura «doppia» della stella.

Per \(\alpha\) Vir abbiamo le determinazioni spettroscopiche: di ADAMS e JOY, 0''0.038; di EDWARDS, 0''0.024; di RIMMER, 0''0.026; la determinazione di PLUMMER, 0''0.020 e la parallasse trigonometrica 0''0.010 ± 0''0.010, proveniente dalle due fonti: di McCormick (0''0.010 ± 0''0.011) e di Cape (0''0.010 ± 0''0.020). E’ assai probabile, anche qui, che sia superato il limite \(\alpha < 5\).

Infine, per \(\mu\) Sco, la velocità orbitale indicata è quella relativa: per essere più favorevoli alla teoria balistica si può ridurre alla metà il valore di \(\alpha\), ottenendo ancora un valore altissimo: \(\alpha = 89\). Abbiamo le determinazioni spettroscopiche: di EDWARDS, 0''0.012; di RIMMER, 0''0.012 e quelle di KAPTEYN e di RASMUSON che assegnano alla parallasse lo stesso valore 0''0.008. Non v’è dubbio alcuno che questa doppia spettroscopica non risponde neanche alla condizione \(\alpha < 10\).

Si comprende quindi che, in certi casi almeno, la teoria balistica non giustifica la variabilità delle binarie ad eclisse e che, in genere, per il suo non necessario intervento in una serie di fatti che l’eclisse spiega da sola, si deve ritenere, per le variabili Algol, una teoria almeno superflua.

7. — Consideriamo ora una prova statistica, che LA ROSA ha addotta ripetutamente come «la spiegazione di un enigma impenetrabile»: intendendo dell’argomento che egli adduce per giustificare la frequenza maggiore delle variabili a lungo periodo, in confronto della frequenza delle variabili a corto periodo. Statistiche più recenti confermano il fatto, perché in sostanza le maggiori frequenze di stelle variabili si hanno per i periodi di
12 ore, 1 settimana e 300 giorni e il rapporto della frequenza delle stelle
dei primi due gruppi a quella delle stelle del terzo gruppo è di 1 a 3 (*)

L'argomento ha gran valore per la teoria balistica; ma, secondo me, è
decisamente contrario. Dalla condizione di variabilità, viene dedotto infatti
che «una doppia di piccolo periodo può apparirci come variabile se essa ci
è relativamente vicina e viceversa»: (*) ne segue, quindi, che l'osservazione
delle stelle variabili a corto periodo si deve avere entro distanze limitate,
e quindi, che le variabili Cefeidi di ammasso, che hanno in massima parte
periodi inferiori ad 1 giorno e sono lontanissime, non dovrebbero essere
stelle variabili.

Riserbandomi di ritornare più oltre su questa conseguenza della teoria,
ricorderò che l'argomento è stato ripreso recentemente da Crenna (**)
in una nota presentata all'Accademia dei Lincei da La Rosa, per dimostrare
che risulta anche spiegata l'assenza delle variabili del tipo Algol dagli
ammassi globulari. L'autore vorrà concedermi di citare e di commentare
queste «nuove circostanze - a favore della teoria - rilevate dalla cono-
scenza delle stelle variabili ».

a) « Un primo fatto è che tutte le Cefeidi mostrano una variazione di ve-
locità radiale avente lo stesso periodo della loro variazione d'intensità lu-
minosa ed inoltre che l'epoca del minimo di velocità radiale (massima ve-
locità verso l'osservatore) coincide, approssimativamente, con quella del
massimo splendore e l'epoca del massimo di velocità radiale con quella
del minimo splendore ». E' questa, infatti, la circostanza che determinò
un'obiezione di SALET, alla quale La Rosa (***) rispose considerando che,
per $\alpha > \frac{1}{2} \pi$, le curve di $T = f(t)$ stabiliscono che i massimi di luce ca-
dono in prossimità dei massimi e dei minimi di T e, quindi, in prossimità
dei momenti nei quali la velocità radiale raggiunge i valori estremi; per
$\alpha \leq \frac{1}{2} \pi$, invece, si avrebbe la differenza di un quarto di periodo fra i
massimi e i minimi di luce e i massimi e i minimi corrispondenti della
velocità radiale (verso l'osservatore).

In tal modo, l'accordo richiesto dall'osservazione si ottiene quando,
per le Cefeidi, è $\alpha > \frac{1}{2} \pi$, e tanto meglio, aggiungerò, quanto più α è pro-
simo ad 1. Non si capisce, quindi, il ragionamento di Crenna, fondato
sulle stesse curve, secondo il quale è per α vicino a 0.16 (1/2 π) che il ma-
ssimo di velocità radiale cade in vicinanza del minimo di luce, a meno che
vicino a 0.16 voglia dire vicino ad 1, ovvero la vicinanza al minimo di luce
sia uno spostamento prossimo ad un quarto di periodo.

Si vede chiaramente lo sforzo di conciliare ciò che non è conciliabile,
perché, la forma quasi-sinusoidale delle variazioni della velocità radiale delle
Cefeidi non è compatibile colla teoria balistica, a meno che supportare $\alpha \leq \frac{1}{2} \pi$;
ma questa ipotesi porta con sé il disaccordo di un quarto di periodo fra i

(*) La Rosa aveva dedotto il rapporto di 1 a 7, fra le frequenze delle variabili appa-
tenenti alla 3° e alla 2° classe di SCHEINER.
valori estremi di velocità radiale e di luminosità: di qui certamente l'espressione di vicinanza a 0.16, per non cercare un accordo importante, perdendone un altro più importante ancora. Ma, in sostanza, l'accordo fra le esigenze della teoria, da una parte, e quelle dei fatti osservati, dall'altra, non appare.

La dimostrazione di CRENNA include l'osservazione che l'accordo cercato «che appare naturale nell'ipotesi balistica, rimane invece un fatto inesplicabile e misterioso nelle varie teorie che del fenomeno di variabilità (delle Cefeidi) sono state date». Ma quale più brillante, immediata, convincente spiegazione si può avere di questo accordo non solo, ma anche della variazione concorde di colore e di classe spettrale, quando si considerino le Cefeidi come stelle pulsanti?

b) Ed ancora, dopo avere criticato l'induzione di HENROTEAU, secondo la quale l'assenza di stelle Algol negli ammassi globulari è interpretata come contraria a concepire le Cefeidi come stelle doppie: «le stelle Algol sono fra tutte le variabili quelle che hanno il periodo più piccolo (!); e quindi giustamente gli ammassi non ci mostrano nessuna variabile di questo tipo, perché essendo assai grandi le loro distanze da noi non è più possibile che le doppie di piccolo periodo ci presentino il fenomeno di variabilità di quel tipo». In verità, fra l'induzione di HENROTEAU e la deduzione di CRENNA, è da preferire l'induzione del primo, anche se giudicata «paradossale»; perché non si capisce affatto come mai negli ammassi globulari debbano mancare le variabili Algol - in base alla teoria balistica, la quale di questo tipo di variabilità può dare e non sempre, come abbiamo visto, una spiegazione non necessaria e debbano invece essere presenti, e in gran numero, le Cefeidi a periodo ancor più piccolo, che, secondo la teoria di LA ROSA sarebbero ancora da considerare come stelle doppie.

È chiaro che la teoria balistica deve portare a dimostrare la non variabilità delle Cefeidi.

c) E così giungiamo «a un altro fatto assai importante restando sempre nel campo delle Cefeidi» il quale «ci dà un notevole indizio in favore della teoria balistica». Il fatto importante è la legge di Miss LEAVITT che CRENNA cerca di giustificare colla teoria balistica, fornendo due spiegazioni «delle quali nessuna è veramente soddisfacente».

La prima spiegazione è la seguente: «Siccome le variabili di un ammasso stellare si trovano tutte alla stessa distanza da noi, ne segue che, considerata una doppia per la quale K_b sia prossimo a $1/2 \pi$, come la teoria vuole affinché essa ci si rivelì come variabile, un'altra doppia di periodo maggiore dovrebbe trovarsi (secondo l'ipotesi balistica) a distanza maggiore perché la condizione $K_b \sim 1/2 \pi$ sia soddisfatta; ma essendo le distanze tutte uguali, questa doppia non potrà rivelarsi come variabile, a meno che le sue variazioni di luce non si rendano più appariscenti in grazia
di una grandezza assoluta (*) maggiore; quindi al crescere del periodo ci si potranno manifestare come variabili soltanto doppie di grandezza assoluta sempre più grande».

Non è difficile obbiettare che se la legge di Miss Leavitt non fosse che l’espressione di una selezione che l’osservatore compie spontaneamente, essa non avrebbe nessun significato concreto e quindi, né la teoria balistica, né alcun’altra teoria potrebbe giustificarla come una conseguenza delle proprie leggi, ritenute valide in generale: se dunque il ragionamento di Crenna fosse giusto, distruggerebbe senz’altro la dimostrazione qualitativa della legge di Miss Leavitt, data recentemente da La Rosa (1) attraverso la teoria balistica. E’ poi chiaro che esso richiederebbe che l’osservazione di variabilità fosse limitata alle stelle più brillanti, mentre invece la legge risulta proprio dal fatto che le stelle più brillanti hanno in media un periodo di variabilità più ampio di quelle più deboli (apparentemente e assolutamente).

La seconda spiegazione, poi, considera Kb variabile fra 1 e 0,1, ciò che è inconciliabile, per la legge quasi-sinusoidale delle velocità radiali, colla teoria balistica, dovendosi sempre avere, nei casi ora considerati, $\alpha \leq 1/2 \pi$.

Si può quindi concludere che le considerazioni di distanza, di cui tanto spesso si vale la teoria balistica per appoggiare le sue leggi, sono proprio quelle che la contraddicono.

8. — Ma è giunto il momento di mostrare che la teoria balistica nega la variabilità delle Cefeidi: per questo semplice motivo non avrebbe ragione di essere la dimostrazione formale della legge di Miss Leavitt data da La Rosa.

Per una Cefide, in conseguenza della legge osservata delle velocità radiali, la teoria balistica impone che sia soddisfatta la condizione $\alpha \leq 1/2 \pi$: poco importa adesso se, come già si è notato, questa condizione conduce alla differenza di un quarto di periodo fra i valori estremi di velocità e di luminosità.

Come è ben noto, tutte le Cefeidi hanno in comune un gran numero di caratteristiche (le più importanti: analogia nella regolarità, continuità, ampiezza di variazione luminosa; nella variazione periodica di colore, spettro e velocità radiale); ma quelle a più corto periodo (Cefeidi di ammasso), anche non facenti parte di ammassi globulari, sono in media più distanti delle Cefeidi tipiche, il cui periodo è attorno ad una settimana; hanno una scarsa concentrazione galattica, grandi velocità radiali, più deboli luminosità apparenti.

Considereremo perciò separatamente le due specie di Cefeidi.

Cefeidi tipiche: fra esse sono notissime ζ Cephei, η Aquilae, ξ Gemi-

(*) Per tutte le stelle di un ammasso, la grandezza assoluta differisce dalla grandezza apparente solo per una costante, la quale sarà diversa, in generale, per un altro ammasso.
norum, i cui periodi sono rispettivamente di giorni 5.37, 7.18, 10.15, e le cui parallassi ("), secondo SHAPLEY, sono 0".0054, 0".0046, 0".0036.

Per tutte e tre le stelle il valore di K risulta sensibilmente identico a 0,35.105; se quindi indichiamo con v la velocità orbitale dell’ipotetico compagno, sarà

$$b = \frac{v}{3} \times 10^{-5}$$

e, dovendo essere $Kb = \alpha < 1/2 \pi$, dovrà essere soddisfatta la relazione

$$0.35v \leq 0.48,$$

cioè

$$v \leq 1.4 \text{ km/sec}.$$

Ricerche indipendenti sulla curva periodo-luminosità di SHAPLEY hanno condotto alla conclusione che le parallassi dedotte da essa sono sistematicamente troppo piccole e debbono essere divise per 0.6 — 0.7 circa ("). Raddoppiandole addirittura, si ottiene che v, per tutte e tre le stelle considerate, dovrebbe risultare minore od eguale a 2.8 km/sec, affinché fosse soddisfatta la condizione balistica di variabilità; si avrebbe cioè una velocità orbitale che non potrebbe essere rivelata che con grande difficoltà dalle misure di velocità radiale: invece, per η Aquilæ, per es., l’ampiezza di variazione della velocità radiale è di 40 km/sec e quindi dovremmo attribuire alla sua parallasse un valore circa 15 volte maggiore di quello attribuito da SHAPLEY.

Alla stessa conclusione saremmo pervenuti considerando qualunque altra Cefeide tipica per la quale il valore di K è all’incirca quello precedentemente ottenuto, o maggiore: per es., SU Cas ($K = 1.6.10^4$); RT Aur ($K = 0.8.10^4$); X Sgr ($K = 0.5.10^4$), etc.

Cefeidi di ammasso - Per queste Cefeidi, che hanno periodo inferiore ad 1 giorno, i valori di K risultano ancora maggiori dei precedenti: volendo distinguere quelle che effettivamente si trovano negli ammassi globulari dalle altre, che pure avendo periodo cortissimo, non fanno parte di ammassi, abbiamo per queste ultime una parallasse media dell’ordine di 0".001, secondo SHAPLEY. Ne segue un valore di K maggiore di 12.105 e quindi la condizione

$$v < 0.04 \text{ km/sec},$$

perché vengano insieme realizzate le condizioni di variabilità in base alla teoria balistica e di quasi-sinusoidalità delle velocità radiali osservate.
Anche moltiplicando le parallassi di Shapley per 50, v resta sempre al disotto della possibilità di riconoscere una variazione periodica della velocità radiale!

Passando poi alle vere e proprie Cefeidi di ammasso, otterremo, evidentemente, risultati ancor più significativi. La distanza dell’ammasso globulare più vicino, α Centauri, è ritenuta da Shapley, in base alla curva periodo-luminosità, circa 20.000 anni-luce e, corretto il punto-zero della curva in base alle ricerche ricordate (*), si ottiene una probabile distanza di 12.000 anni-luce. Per tutte le variabili con periodo minore di 1 giorno, K risulta maggiore di 44.10° e quindi dovrebbe avversi $v < 0.01 \text{ km/sec.}$

La parallasse può evidentemente essere moltiplicata per 10, per es. e insieme le Cefeidi considerate possono avere un periodo di 10,20 giorni, senza che cessi di essere soddisfatta la condizione di invariabilità stabilita sulla base della teoria balistica.

Altri esempi sono perfettamente inutili, poiché sembra esaurientemente stabilito il disaccordo della teoria colle osservazioni, nel suo punto più vitale.

9. — Concludendo (*): sulla base delle determinazioni parallattiche, trattate in modo da escludere la possibilità dell’influenza degli errori di valutazione individuali, è mostrato che:

1) l’osservazione degli spostamenti periodici delle righe spettrali permette di stabilire la natura di «doppie» delle stelle, anche per $\alpha > 10$, cioè nei casi di esclusione della teoria;

2) l’interpretazione balistica della distribuzione delle doppie spettroscopiche non sembra in accordo coi fatti osservati;

3) la spiegazione balistica della variabilità delle stelle del tipo Algol appare superflua in generale, e in certi casi in disaccordo colle osservazioni;

4) l’interpretazione della statistica delle variabili è in contraddizione colle osservazioni;

(*) Non è da escludere che le stato attuale di schema della teoria balistica e la perspicacia dell’autore consentano contro - obiezioni parziali. E’ ovvio, per esempio, che l’esclusione di un limite superiore per la condizione di variabilità può svalorizzare talune deduzioni teoriche che implicano la considerazione delle distanze; ma è chiaro che ogni confutazione su questa base ha per effetto la rinuncia alle corrispondenti conclusioni della teoria, che erano state assunte come prove favorevoli, e sulle quali appunto qualche obiezione del testo è stata fondata.

Soprattutto sembra difficile di poter superare, per le Cefeidi, il disaccordo fra la forma della variazione delle velocità radiali e la forma della variazione luminosa, la prima richiedendo valori piccoli di α e la seconda valori grandi.
5) la teoria balistica porta a stabilire la non variabilità delle Cefeidi e quindi rende ingiustificabile, sulle sue basi, una dimostrazione anche qualitativa, della legge di Miss LEAVITT.

Il disaccordo della teoria balistica coi fatti osservati appare nei punti più essenziali e vitali delle sue conseguenze, in particolare perchè l’osservata variabilità delle Cefeidi, in accordo colla legge quasi-sinusoidale della variazione delle loro velocità radiali, porta a stabilire la relazione

\[\alpha > 1/2 \pi, \]

la quale, in queste circostanze, è inconciliabile colle premesse della teoria balistica.

Sembrerebbe quindi lecito di terminare colle parole stesse di LA ROSA, che si riferiscono alla sua teoria:

« Se la legge (delle velocità radiali osservate) si dimostrasse incompatibile con le osservazioni (cioè che si verifica per \(\alpha > 1/2 \pi \)), allora - e solamente allora -, provato il disaccordo fra teoria e fatti, si renderebbe inevitabile il suo abbandono, anche se la sua costruzione fosse - com’è - logicamente inattaccabile ».

R. Specola di Merate.
BIBLIOGRAFIA

